Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(14): 140801, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640371

RESUMO

The manipulation of quantum states of light has resulted in significant advancements in both dark matter searches and gravitational wave detectors. Current dark matter searches operating in the microwave frequency range use nearly quantum-limited amplifiers. Future high frequency searches will use photon counting techniques to evade the standard quantum limit. We present a signal enhancement technique that utilizes a superconducting qubit to prepare a superconducting microwave cavity in a nonclassical Fock state and stimulate the emission of a photon from a dark matter wave. By initializing the cavity in an |n=4⟩ Fock state, we demonstrate a quantum enhancement technique that increases the signal photon rate and hence also the dark matter scan rate each by a factor of 2.78. Using this technique, we conduct a dark photon search in a band around 5.965 GHz (24.67 µeV), where the kinetic mixing angle ε≥4.35×10^{-13} is excluded at the 90% confidence level.

2.
Nat Commun ; 15(1): 1681, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395989

RESUMO

Large-scale quantum computers will inevitably need quantum error correction to protect information against decoherence. Traditional error correction typically requires many qubits, along with high-efficiency error syndrome measurement and real-time feedback. Autonomous quantum error correction instead uses steady-state bath engineering to perform the correction in a hardware-efficient manner. In this work, we develop a new autonomous quantum error correction scheme that actively corrects single-photon loss and passively suppresses low-frequency dephasing, and we demonstrate an important experimental step towards its full implementation with transmons. Compared to uncorrected encoding, improvements are experimentally witnessed for the logical zero, one, and superposition states. Our results show the potential of implementing hardware-efficient autonomous quantum error correction to enhance the reliability of a transmon-based quantum information processor.

3.
Nature ; 615(7953): 614-619, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36949338

RESUMO

Early experiments with transiting circular Rydberg atoms in a superconducting resonator laid the foundations of modern cavity and circuit quantum electrodynamics1, and helped explore the defining features of quantum mechanics such as entanglement. Whereas ultracold atoms and superconducting circuits have since taken rather independent paths in the exploration of new physics, taking advantage of their complementary strengths in an integrated system enables access to fundamentally new parameter regimes and device capabilities2,3. Here we report on such a system, coupling an ensemble of cold 85Rb atoms simultaneously to an, as far as we are aware, first-of-its-kind optically accessible, three-dimensional superconducting resonator4 and a vibration-suppressed optical cavity in a cryogenic (5 K) environment. To demonstrate the capabilities of this platform, and with an eye towards quantum networking5, we leverage the strong coupling between Rydberg atoms and the superconducting resonator to implement a quantum-enabled millimetre wave (mmwave) photon to optical photon transducer6. We measured an internal conversion efficiency of 58(11)%, a conversion bandwidth of 360(20) kHz and added thermal noise of 0.6 photons, in agreement with a parameter-free theory. Extensions of this technique will allow near-unity efficiency transduction in both the mmwave and microwave regimes. More broadly, our results open a new field of hybrid mmwave/optical quantum science, with prospects for operation deep in the strong coupling regime for efficient generation of metrologically or computationally useful entangled states7 and quantum simulation/computation with strong non-local interactions8.

4.
Nature ; 612(7940): 435-441, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36517711

RESUMO

Guiding many-body systems to desired states is a central challenge of modern quantum science, with applications from quantum computation1,2 to many-body physics3 and quantum-enhanced metrology4. Approaches to solving this problem include step-by-step assembly5,6, reservoir engineering to irreversibly pump towards a target state7,8 and adiabatic evolution from a known initial state9,10. Here we construct low-entropy quantum fluids of light in a Bose-Hubbard circuit by combining particle-by-particle assembly and adiabatic preparation. We inject individual photons into a disordered lattice for which the eigenstates are known and localized, then adiabatically remove this disorder, enabling quantum fluctuations to melt the photons into a fluid. Using our platform11, we first benchmark this lattice melting technique by building and characterizing arbitrary single-particle-in-a-box states, then assemble multiparticle strongly correlated fluids. Intersite entanglement measurements performed through single-site tomography indicate that the particles in the fluid delocalize, whereas two-body density correlation measurements demonstrate that they also avoid one another, revealing Friedel oscillations characteristic of a Tonks-Girardeau gas12,13. This work opens new possibilities for the preparation of topological and otherwise exotic phases of synthetic matter3,14,15.

5.
Nature ; 605(7908): 46-50, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508782

RESUMO

Progress towards the realization of quantum computers requires persistent advances in their constituent building blocks-qubits. Novel qubit platforms that simultaneously embody long coherence, fast operation and large scalability offer compelling advantages in the construction of quantum computers and many other quantum information systems1-3. Electrons, ubiquitous elementary particles of non-zero charge, spin and mass, have commonly been perceived as paradigmatic local quantum information carriers. Despite superior controllability and configurability, their practical performance as qubits through either motional or spin states depends critically on their material environment3-5. Here we report our experimental realization of a qubit platform based on isolated single electrons trapped on an ultraclean solid neon surface in vacuum6-13. By integrating an electron trap in a circuit quantum electrodynamics architecture14-20, we achieve strong coupling between the motional states of a single electron and a single microwave photon in an on-chip superconducting resonator. Qubit gate operations and dispersive readout are implemented to measure the energy relaxation time T1 of 15 µs and phase coherence time T2 over 200 ns. These results indicate that the electron-on-solid-neon qubit already performs near the state of the art for a charge qubit21.

6.
Rev Sci Instrum ; 93(4): 044709, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489924

RESUMO

We introduce a Xilinx RF System-on-Chip (RFSoC)-based qubit controller (called the Quantum Instrumentation Control Kit, or QICK for short), which supports the direct synthesis of control pulses with carrier frequencies of up to 6 GHz. The QICK can control multiple qubits or other quantum devices. The QICK consists of a digital board hosting an RFSoC field-programmable gate array, custom firmware, and software and an optional companion custom-designed analog front-end board. We characterize the analog performance of the system as well as its digital latency, important for quantum error correction and feedback protocols. We benchmark the controller by performing standard characterizations of a transmon qubit. We achieve an average gate fidelity of Favg=99.93%. All of the schematics, firmware, and software are open-source.

7.
Phys Rev Lett ; 127(10): 107701, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34533363

RESUMO

Multimode cavity quantum electrodynamics-where a two-level system interacts simultaneously with many cavity modes-provides a versatile framework for quantum information processing and quantum optics. Because of the combination of long coherence times and large interaction strengths, one of the leading experimental platforms for cavity QED involves coupling a superconducting circuit to a 3D microwave cavity. In this work, we realize a 3D multimode circuit QED system with single photon lifetimes of 2 ms across 9 modes of a novel seamless cavity. We demonstrate a variety of protocols for universal single-mode quantum control applicable across all cavity modes, using only a single drive line. We achieve this by developing a straightforward flute method for creating monolithic superconducting microwave cavities that reduces loss while simultaneously allowing control of the mode spectrum and mode-qubit interaction. We highlight the flexibility and ease of implementation of this technique by using it to fabricate a variety of 3D cavity geometries, providing a template for engineering multimode quantum systems with exceptionally low dissipation. This work is an important step towards realizing hardware efficient random access quantum memories and processors, and for exploring quantum many-body physics with photons.

8.
Phys Rev Lett ; 126(14): 141302, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33891438

RESUMO

Detection mechanisms for low mass bosonic dark matter candidates, such as the axion or hidden photon, leverage potential interactions with electromagnetic fields, whereby the dark matter (of unknown mass) on rare occasion converts into a single photon. Current dark matter searches operating at microwave frequencies use a resonant cavity to coherently accumulate the field sourced by the dark matter and a near standard quantum limited (SQL) linear amplifier to read out the cavity signal. To further increase sensitivity to the dark matter signal, sub-SQL detection techniques are required. Here we report the development of a novel microwave photon counting technique and a new exclusion limit on hidden photon dark matter. We operate a superconducting qubit to make repeated quantum nondemolition measurements of cavity photons and apply a hidden Markov model analysis to reduce the noise to 15.7 dB below the quantum limit, with overall detector performance limited by a residual background of real photons. With the present device, we perform a hidden photon search and constrain the kinetic mixing angle to ε≤1.68×10^{-15} in a band around 6.011 GHz (24.86 µeV) with an integration time of 8.33 s. This demonstrated noise reduction technique enables future dark matter searches to be sped up by a factor of 1,300. By coupling a qubit to an arbitrary quantum sensor, more general sub-SQL metrology is possible with the techniques presented in this Letter.

9.
Nature ; 590(7847): 571-575, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33627810

RESUMO

The generation of high-fidelity distributed multi-qubit entanglement is a challenging task for large-scale quantum communication and computational networks1-4. The deterministic entanglement of two remote qubits has recently been demonstrated with both photons5-10 and phonons11. However, the deterministic generation and transmission of multi-qubit entanglement has not been demonstrated, primarily owing to limited state-transfer fidelities. Here we report a quantum network comprising two superconducting quantum nodes connected by a one-metre-long superconducting coaxial cable, where each node includes three interconnected qubits. By directly connecting the cable to one qubit in each node, we transfer quantum states between the nodes with a process fidelity of 0.911 ± 0.008. We also prepare a three-qubit Greenberger-Horne-Zeilinger (GHZ) state12-14 in one node and deterministically transfer this state to the other node, with a transferred-state fidelity of 0.656 ± 0.014. We further use this system to deterministically generate a globally distributed two-node, six-qubit GHZ state with a state fidelity of 0.722 ± 0.021. The GHZ state fidelities are clearly above the threshold of 1/2 for genuine multipartite entanglement15, showing that this architecture can be used to coherently link together multiple superconducting quantum processors, providing a modular approach for building large-scale quantum computers16,17.

10.
Opt Lett ; 46(1): 21-24, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33362003

RESUMO

Low-loss conversion among a complete and orthogonal set of optical modes is important for high-bandwidth quantum and classical communication. In this Letter, we explore tunable impedance mismatch between coupled Fabry-Perot resonators as a powerful tool for manipulation of the spatial and temporal properties of optical fields. In the single-mode regime, frequency-dependent impedance matching enables tunable finesse optical resonators. Introducing the spatial dependence of the impedance mismatch enables coherent spatial mode conversion of optical photons at near-unity efficiency. We experimentally demonstrate a NIR resonator whose finesse is tunable over a decade, and an optical mode converter with efficiency >75% for the first six Hermite-Gauss modes. We anticipate that this new perspective on coupled multimode resonators will have exciting applications in micro- and nano-photonics and computer-aided inverse design.

11.
Chem Soc Rev ; 49(1): 8-20, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31808480

RESUMO

In natural photosynthesis, the protein backbone directs and positions primary and secondary electron donor and acceptor moieties in the reaction center to control the yield and kinetics of the sequential electron transfer reactions that transform light energy into chemical potential. Organization of the active cofactors is mainly driven by noncovalent interactions between the protein scaffold and the chromophores. Based on the natural system blueprint, several research efforts have investigated π-π stacking, ionic interactions as well as formation of hydrogen and coordinative bonds as noncovalent organizing principles for the assembly of electron donors and acceptors in artificial reaction centers. Introduction of supramolecular concepts into the organization of electron donor-acceptor in artificial photosynthetic models raises the possibility of applying template-directed synthesis techniques to assemble interlocked systems in which the photo-redox components are mechanically rather than covalently linked. Rotaxanes and catenanes are the leading examples of interlocked molecules, whose recent developments in synthetic chemistry have allowed their efficient preparation. Introduction of mechanical bonds into electron donor-acceptor systems allows the study of the interlocked components' submolecular motions and conformational changes, which are triggered by external stimuli, on the thermodynamic and kinetic parameters of photoinduced processes in artificial reaction centers. This Tutorial discusses our efforts in the synthesis and photophysical investigation of rotaxanes and catenanes decorated with peripheral electron donors and [60]fullerene as the acceptor. The assembly of our rotaxanes and catenanes is based on the classic 1,10-phenanthroline-copper(i) metal template strategy in conjunction with the virtues of the Cu(i)-catalyzed-1,3-dipolar cycloaddition of azides and alkynes (the CuAAC or "click" reaction) as the protocol for the final macrocyclization or stoppering reactions of the entwined precursors. Time-resolved emission and transient absorption experiments revealed that upon excitation, our multichromophoric rotaxanes and catenanes undergo a cascade of sequential energy and electron transfer reactions that ultimately yield charge separated states with lifetimes as long as 61 microseconds, thereby mimicking the functions of the natural systems. The importance of the Cu(i) ion (used to assemble the interlocked molecules) as an electronic relay in the photoinduced processes is also highlighted. The results of this research demonstrate the importance of the distinct molecular conformations adopted by rotaxanes and catenanes in the electron transfer dynamics and illustrate the versatility of interlocked molecules as scaffolds for the organization of donor-acceptor moieties in the design of artificial photosynthetic reaction centers.

12.
Proc Natl Acad Sci U S A ; 116(49): 24475-24479, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31740619

RESUMO

The classical Hall effect, the traditional means of determining charge-carrier sign and density in a conductor, requires a magnetic field to produce transverse voltages across a current-carrying wire. We demonstrate a use of geometry to create transverse potentials along curved paths without any magnetic field. These potentials also reflect the charge-carrier sign and density. We demonstrate this effect experimentally in curved wires where the transverse potentials are consistent with the doping and change polarity as we switch the carrier sign. In straight wires, we measure transverse potential fluctuations with random polarity demonstrating that the current follows a complex, tortuous path. This geometrically induced potential offers a sensitive characterization of inhomogeneous current flow in thin films.

13.
Nat Commun ; 10(1): 5323, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757947

RESUMO

Electrons on helium form a unique two-dimensional system on the interface of liquid helium and vacuum. A small number of trapped electrons on helium exhibits strong interactions in the absence of disorder, and can be used as a qubit. Trapped electrons typically have orbital frequencies in the microwave regime and can therefore be integrated with circuit quantum electrodynamics (cQED), which studies light-matter interactions using microwave photons. Here, we experimentally realize a cQED platform with the orbitals of single electrons on helium. We deterministically trap one to four electrons in a dot integrated with a microwave resonator, allowing us to study the electrons' response to microwaves. Furthermore, we find a single-electron-photon coupling strength of [Formula: see text] MHz, greatly exceeding the resonator linewidth [Formula: see text] MHz. These results pave the way towards microwave studies of Wigner molecules and coherent control of the orbital and spin state of a single electron on helium.

14.
Nano Lett ; 19(11): 8287-8293, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31661615

RESUMO

Quantum computing based on superconducting qubits requires the understanding and control of the materials, device architecture, and operation. However, the materials for the central circuit element, the Josephson junction, have mostly been focused on using the AlOx tunnel barrier. Here, we demonstrate Josephson junctions and superconducting qubits employing two-dimensional materials as the tunnel barrier. We batch-fabricate and design the critical Josephson current of these devices via layer-by-layer stacking N layers of MoS2 on the large scale. Based on such junctions, MoS2 transmon qubits are engineered and characterized in a bulk superconducting microwave resonator for the first time. Our work allows Josephson junctions to access the diverse material properties of two-dimensional materials that include a wide range of electrical and magnetic properties, which can be used to study the effects of different material properties in superconducting qubits and to engineer novel quantum circuit elements in the future.

15.
Nature ; 570(7761): E52, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31130729

RESUMO

Change history: In this Article, two additional references (now added as refs 12 and 14) should have been cited at the end of the sentence "Recently, photonic systems have emerged as a platform of interest for the exploration of synthetic quantum matter.". This has been corrected online.

16.
Nature ; 566(7742): 51-57, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30728523

RESUMO

Superconducting circuits are a competitive platform for quantum computation because they offer controllability, long coherence times and strong interactions-properties that are essential for the study of quantum materials comprising microwave photons. However, intrinsic photon losses in these circuits hinder the realization of quantum many-body phases. Here we use superconducting circuits to explore strongly correlated quantum matter by building a Bose-Hubbard lattice for photons in the strongly interacting regime. We develop a versatile method for dissipative preparation of incompressible many-body phases through reservoir engineering and apply it to our system to stabilize a Mott insulator of photons against losses. Site- and time-resolved readout of the lattice allows us to investigate the microscopic details of the thermalization process through the dynamics of defect propagation and removal in the Mott phase. Our experiments demonstrate the power of superconducting circuits for studying strongly correlated matter in both coherent and engineered dissipative settings. In conjunction with recently demonstrated superconducting microwave Chern insulators, we expect that our approach will enable the exploration of topologically ordered phases of matter.

17.
Phys Rev Lett ; 119(15): 150502, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29077454

RESUMO

We autonomously stabilize arbitrary states of a qubit through parametric modulation of the coupling between a fixed frequency qubit and resonator. The coupling modulation is achieved with a tunable coupling design, in which the qubit and the resonator are connected in parallel to a superconducting quantum interference device. This allows for quasistatic tuning of the qubit-cavity coupling strength from 12 MHz to more than 300 MHz. Additionally, the coupling can be dynamically modulated, allowing for single-photon exchange in 6 ns. Qubit coherence times exceeding 20 µs are maintained over the majority of the range of tuning, limited primarily by the Purcell effect. The parametric stabilization technique realized using the tunable coupler involves engineering the qubit bath through a combination of photon nonconserving sideband interactions realized by flux modulation, and direct qubit Rabi driving. We demonstrate that the qubit can be stabilized to arbitrary states on the Bloch sphere with a worst-case fidelity exceeding 80%.

18.
Angew Chem Int Ed Engl ; 56(9): 2245-2246, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28133912

RESUMO

John D. (Jack) Roberts, Institute Professor of Chemistry Emeritus at the California Institute of Technology died on October 29, 2016, at the age of 98. Roberts was one of the of the iconic figures in physical organic chemistry of the 20th century. His achievements included proving the occurrence of benzynes and nonclassical carbocations as reaction intermediates, and he was instrumental in establishing NMR spectroscopy as a standard analytical technique in organic chemistry.

19.
Phys Rev Lett ; 114(8): 080501, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25768741

RESUMO

We introduce a new multimode cavity QED architecture for superconducting circuits that can be used to implement photonic memories, more efficient Purcell filters, and quantum simulations of photonic materials. We show that qubit interactions mediated by multimode cavities can have exponentially improved contrast for two qubit gates without sacrificing gate speed. Using two qubits coupled via a three-mode cavity system we spectroscopically observe multimode strong couplings up to 102 MHz and demonstrate suppressed interactions off resonance of 10 kHz when the qubits are ≈600 MHz detuned from the cavity resonance. We study Landau-Zener transitions in our multimode systems and demonstrate quasiadiabatic loading of single photons into the multimode cavity in 25 ns. We introduce an adiabatic gate protocol to realize a controlled-Z gate between the qubits in 95 ns and create a Bell state with 94.7% fidelity. This corresponds to an on/off ratio (gate contrast) of 1000.

20.
Nanoscale ; 7(3): 1145-60, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25482308

RESUMO

A new series of nanoscale electron donor-acceptor systems with [2]catenane architectures has been synthesized, incorporating magnesium porphyrin (MgP) or free base porphyrin (H2P) as electron donor and C60 as electron acceptor, surrounding a central tetrahedral Cu(I)-1,10-phenanthroline (phen) complex. Model catenated compounds incorporating only one or none of these photoactive moieties were also prepared. The synthesis involved the use of Sauvage's metal template protocol in combination with the 1,3-dipolar cycloaddition of azides and alkynes ("click chemistry"), as in other recent reports from our laboratories. Ground state electron interactions between the individual constituents was probed using electrochemistry and UV-vis absorption spectroscopy, while events occurring following photoexcitation in tetrahydrofuran (under both aerobic and anaerobic conditions) at various wavelengths were followed by means of time-resolved transient absorption and emission spectroscopies on the femtosecond and nanosecond time scales, respectively, complemented by measurements of quantum yields for generation of singlet oxygen. From similar studies with model catenates containing one or neither of the chromophores, the events following photoexcitation could be elucidated. The results were compared with those previously reported for analogous catenates based on zinc porphyrin (ZnP). It was determined that a series of energy transfer (EnT) and electron transfer (ET) processes take place in the present catenates, ultimately generating long-distance charge separated (CS) states involving oxidized porphyrin and reduced C60 moieties, with lifetimes ranging from 400 to 1060 nanoseconds. Shorter lived short-distance CS states possessing oxidized copper complexes and reduced C60, with lifetimes ranging from 15 to 60 ns, were formed en route to the long-distance CS states. The dynamics of the ET processes were analyzed in terms of their thermodynamic driving forces. It was clear that intramolecular back ET was occurring in the inverted region of the Marcus parabola correlating rates and driving forces for electron transfer processes. In addition, evidence for triplet excited states as a product of either incomplete ET or back ET was found. The differences in behavior of the three catenates upon photoexcitation are analyzed in terms of the energy levels of the various intermediate states and the driving forces for EnT and ET processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...